
This paper presents novel approaches to optimizing Deep Neural Networks
(DNN) for the 4-class intertwined spiral classification problem using an
Evolution strategy algorithm with 1/5 success rule and a Genetic Algorithm (GA)
implemented via the DEAP framework. Unlike the simpler two-class spiral, this
4-class variant remains largely unexplored in machine learning fields.
Evolutionary algorithms can provide a dynamic and adaptive mechanism that
optimizes hyperparameters of DNNs for non-linear classification tasks and this
study leverages ES(1+1) with the 1/5 success rule and DEAP based Genetic
Algorithms. Without hyperparameter optimization, the baseline model achieved
an average accuracy of 34.1% with an average loss of 1.32. GA with DEAP
optimizing hyperparameters achieved the highest classification accuracy of up
to 96.2%. ES(1+1) with the 1/5 success rule found a model that delivers 94.1%
accuracy. These findings establish evolutionary algorithms as powerful tools for
enhancing DNN performance and provide valuable insights for future
advancements in deep learning optimization.

Baseline model: As a baseline model, a deep neural network (DNN) with three
hidden layers was implemented and tested using Keras with TensorFlow as the
backend. The network architecture consists of
• Input Layer: 2 neurons (x, y coordinates).
• Hidden Layers: 64 → 32 → 16 neurons, ReLU activation for hierarchical feature

extraction.
• Output Layer: 4 neurons, SoftMax activation for classification.
• Training Parameters: RMSprop optimizer (learning rate: 0.01), batch size = 16,

and 50 epochs with early stopping

ES (1+1) with 1/5 Success Rule Algorithm: Unlike conventional evolutionary
strategies or genetic algorithms, ES(1+1) generates one offspring per iteration from
a single parent using the 1/5 success rule [2]. This rule dynamically adjusts the
mutation step size: if more than 20% of previous mutations improve fitness, the step
size increases to promote exploration; otherwise, it decreases to exploit the search
space. Hyperparameter structure of a candidate solution includes:
• Number of neurons: Between 8 and 512 per hidden layer
• Activation function: randomly selected from ReLU, ELU, Sigmoid, and Tanh
• Optimization: Between SGD, RMSprop, and Adam,
• Learning rate: Between 0.01 and 0.1, and
• Training batch size: between 16 and 64
The ES(1+1) optimization begins with a single parent solution. To generate a new
offspring solution, Gaussian random number is added to the parent solution’s
parameters using the formula:

�ℎ = ℎ + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝜎𝜎. 𝑚𝑚𝑔𝑔𝑚𝑚 ℎ −𝑚𝑚𝑚𝑚𝑚𝑚 ℎ

where h = hyperparameter, σ = mutation step size, and gauss adds Gaussian noise.
The mutation step size (σ) is adapted using the 1/5 success rule, which adjusts
success rate of offspring over the past 10 generations:

𝜎𝜎𝑡𝑡+1 = �𝜎𝜎𝑡𝑡 ⋅ 𝛼𝛼, 𝑚𝑚𝑖𝑖 𝑔𝑔𝑔𝑔𝑠𝑠𝑠𝑠𝑔𝑔𝑔𝑔 𝑟𝑟𝑔𝑔𝑟𝑟𝑠𝑠 >
1
5

𝜎𝜎𝑡𝑡 ⋅ 𝛽𝛽 𝑜𝑜𝑟𝑟ℎ𝑠𝑠𝑟𝑟𝑜𝑜𝑚𝑚𝑔𝑔𝑠𝑠

where α > 1 and β < 1 are scaling factors, and the success rate is defined as the
fraction of offspring outperforming their parent.

Genetic Algorithm (GA) using DEAP: Genetic Algorithms (GAs) are powerful
optimization techniques inspired by natural evolutionary processes, including
selection, crossover, and mutation, to solve complex problems. Distributed
Evolutionary Algorithms in Python (DEAP) framework [3] is utilized to implement the
following GA. Each individual represents a unique configuration of hyperparameters,
defined in the search space as x ∈ 𝑅𝑅4:

𝑚𝑚 = [𝑚𝑚, 𝜂𝜂, 𝑏𝑏, 𝑑𝑑]
where 𝑚𝑚, 𝜂𝜂, 𝑏𝑏, and 𝑑𝑑 represent the number of neurons, learning rate, batch size, and
dropout rate, respectively.

Selection: A tournament selection method selects individuals for reproduction. For a
tournament size 𝑇𝑇, a subset of 𝑇𝑇 individuals is randomly sampled, and the individual
with the lowest validation loss is chosen:

𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 = 𝑔𝑔𝑟𝑟𝑔𝑔min
𝑥𝑥∈𝑇𝑇

𝑖𝑖(𝑚𝑚)

where f(𝑚𝑚) denotes the fitness value (validation loss). Repeat this process until the
desired number of individuals are selected for the next generation.
Crossover: To create offspring, the Blend Crossover (BLX - 𝛼𝛼) operator generates
offspring by linearly interpolating between two parent solutions :

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚1 + 𝑔𝑔 𝑚𝑚2 − 𝑚𝑚1
where 𝑚𝑚2 and 𝑚𝑚1 are the parent individuals, 𝛼𝛼 controls the interpolation extent.
Mutation: Gaussian mutation introduces diversity by perturbing parameters with
noise from a Gaussian distribution.

𝑚𝑚𝑜𝑜′ = 𝑚𝑚𝑜𝑜 + 𝑁𝑁 𝜇𝜇 = 0,𝜎𝜎
where 𝑁𝑁(𝜇𝜇,𝜎𝜎) has mean 𝜇𝜇=0 and standard deviation 𝜎𝜎, where each parameter is
adjusted by adding noise sampled from a Gaussian distribution.

Siri Sri Churakanti*, Batyr Kenzheakhmetov*+, Bhavesh Krishnaram Bhavesh, CJ Chung*,
College of Arts and Sciences, Lawrence Technological University; +Astana IT University, Kazakhstan

EXPERIMENTAL RESULTSABSTRACT METHODOLOGY

Optimizing Hyperparameters for Deep Learning Models Using Evolutionary Algorithms:
Solving the Four-Class Intertwined Spiral Classification Problem

The dataset is constructed as four intertwined spirals, each represented in 2D
polar coordinates. Although synthetic, the four-class spiral dataset serves as a
well-established benchmark for evaluating machine learning models on
nonlinear separability [1]. Its controlled complexity allows for a clear
understanding of how evolutionary algorithms enhance deep neural network
(DNN) performance in challenging classification scenarios. For a class, the
spiral points are generated using the equations shown below:

𝑚𝑚(𝑟𝑟) = 𝑔𝑔.𝑟𝑟.cos(𝑟𝑟 + 𝑏𝑏), 𝑦𝑦(𝑟𝑟) = 𝑔𝑔.𝑟𝑟.sin (𝑟𝑟 + 𝑏𝑏)
where, a = scaling factor, t = angle in radians (range: [0, 10]), and b = angular
offset for each class (b = 0, π/2, π, 3π/2). These parameters ensure proper
generation of the spiral classes, with t ∈ [0, 10] representing the angle.
Gaussian noise 𝑁𝑁(𝜇𝜇, 𝜎𝜎2) was added to simulate real-world imperfections. The
Gaussian noise with a mean (μ) of 0.0 and a variance (𝜎𝜎2) of 0.03, which
introduces variability to the dataset, making it more representative of real-world
data. The input data X ∈ ℝ² is standardized to zero mean and unit variance
using:

𝑚𝑚′ = 𝑥𝑥−𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

DATA COLLECTION

• Baseline model: Without evolutionary optimization, the baseline model achieved average
accuracy of 34.1% with 1.31 as loss value over 50 runs. This serves as a reference point,
underscoring the significant improvements gained through evolutionary algorithms.

• ES(1+1) with 1/5 rule: Models demonstrated robust performance across multiple runs.
Run no. 4 achieved the highest accuracy among ES(1+1) configurations at 94.1% with a
loss of 0.15. These results showcase the adaptability of ES(1+1) in finding effective
architectures across varying network sizes and its robustness for complex 4 class spiral
datasets with noises. A DNN architecture found at run no. 4 is drawn in Fig. 4.

Table 1. Result comparisons between Baseline model, ES(1+1) with 1/5 success rule, and GA-DEAP

Algorithm Contributor Run
No.

Accuracy Loss Activation
Function

Num neurons
for each layer

Learning
Rate

Batch
Size

Optimizers

Baseline Siri 40 0.341 1.31 ReLU 64, 32, 16 0.01 16 RMSprop

ES(1+1)
1/5 rule

Siri 4 0.941 0.15 ReLU 157,153,160 0.01 53 Adam
Siri 5 0.937 0.19 ReLU 8, 512, 512 0.01 62 Adam
Siri 3 0.934 0.17 ELU 272, 86, 214 0.01 44 SDG

GA-
DEAP

Batyr 0 0.962 0.22 ReLU 68, 95 0.003 22 Adam
Batyr 5 0.956 0.17 ReLU 187, 35 0.009 32 Adam
Batyr 6 0.943 0.19 ReLU 190, 95 0.007 31 Adam

Fig. 1. A sample training dataset visualization

Fig. 3. Loss over Generations graph from Run No. 5 to illustrate the
ES(1+1) with 1/5 sucees rule algorithm’s effectiveness in finding

models with optimized hyperparameters.
Fig. 2. Decision boundary of the best-performing model (ES(1+1)

with 1/5 success rule of 94% , illustrating the separation of the four
spiral classes

Fig. 5. Confusion matrix from the ES(1+1) optimized model (Run 5),
showing true labels vs. predicted labels. Diagonal elements indicate correct

classifications, while off-diagonal elements highlight misclassifications

Fig. 6. Decision Boundary of a model found by Genetic Algorithm
using DEAP which achieved 95.6% (Run 5)

Fig. 4. Optimized DNN for ES(1+1), showcasing from Run No. 4
model with 8, 512, 512 hidden neurons.

Fig. 7. Loss over generation graph from Run No. 5 to ilústrate the GA-
DEAP algoritmos effectiveness in finding models with optimized

hyperparameters

• GA using DEAP: The best accuracy on Run no. 5 is 95.6% with loss of 0.17 in Fig. 7,
but the highest accuracy is 96.2% on Run no. 0 with 0.22 loss, these both are
balancing complexity and performance effectively. This demonstrates its efficiency in
resource utilization. The slightly lower learning rate (0.009 vs. 0.01) likely contributed to
finer optimization adjustments, resulting in a low loss.

REFERENCES
1. Lang, K. J., Witbrock, M. J., 1988. Learning to tell two spirals apart. In: Touretzky,

D.,Hinton, G., Sejnowski, T. (Eds.), Proceedings 1988 Connectionist Models
SummerSchool. Morgan Kaufmann, Los Altos, CA, pp. 52–59.

2. Chan-Jin Chung and Robert G. Reynolds, “Knowledge-Based Self-Adaptation in
Evolutionary Search”, International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 14 No. 1 (2000), pp. 19-33

3. F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP:
Evolutionary algorithms made easy,” Journal of Machine Learning Research, vol. 13, pp.
2171–2175, 2012.

This project began in Fall 2024 as part of the MCS 5993 Topics in
Computer Science: Evolutionary Computation and Deep Learning
course. Authors marked with * continued to make additional
contributions to the project during Spring 2025.

where μₓ and σₓ are the mean and
standard deviation of the input data,
respectively. Standardization
ensures that all features are on the
same scale, which is crucial for
aiding convergence during training.
Here in Fig. 1 shows the visualization
of training dataset with 4 classes in
red, blue, green and purple.

	Slide Number 1

